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Field Programmable Gate Arrays
• Programmable logic 

blocks and 
interconnection

• Infinitely and quickly 
reconfigurable

• Can be orders of 
magnitude faster than 
general-purpose 
processors RAM
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Why Precision Analysis?

• Algorithm originally written for general-
purpose processors

• Want to implement on an FPGA

• Two very different computing paradigms
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General-Purpose Processor

• Word-level device
• Data type abstractions

– char, int, double
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FPGA

• Bit-level device
• Bit-exact representation in circuit
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Conversion is Difficult

• Entire width of datapath not necessarily 
used

• Need to match datapath size to algorithm
• Maintain correctness
• Achieve optimality
• Software designers rarely think about 

overflow and underflow
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Manual Precision Analysis

• What are the provable precision 
requirements of my algorithm?

• What are the actual precision requirements 
of my data sets?

• What are the effects of fixed-precision on 
my results?

• Where should I optimize?



9

Précis: A Design-Time Tool

• Provable precision requirements:
Propagation engine

• Actual precision requirements:
Range finding

• Effects of fixed-precision:
Simulation

• Where should I optimize:
Slack analysis
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The Least Significant Bit

• Maximum range = 255
• Quantized into multiples of 0.125
• Need methodology to determine the “best” 

LSB position

2-3 = 0.12527 = 255
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Methodology

• Typically, truncation is used to model a 
fixed-point datapath

• Instead, replace with known constants

0 0 1 1 1 0 11
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Methodology

• Reducing input bit widths to an operator 
reduces the area requirement

• This same relationship holds if we 
substitute zeros instead of truncate

• Use wires to represent substituted zeros
• Almost free in terms of area
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Error Models

• Zero substitution introduces error
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Area Models
• Utilize 2-LUT 

model
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• Compare against real 
hardware 
implementation
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Adder Area Model
Adder Model vs. Virtex
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Multiplier Area Model
Multiplier Model vs. Virtex

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Zeros

N
or

m
al

iz
ed

 A
re

a

Normalized LUTs
Normalized Model



17

Steering Error
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Assume all inputs are 4-bit

77 2-LUTs for base implementation
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Steering Error
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Tolerate 0..8 error on output



19

Steering Error
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Steering Error
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Steering Error

+1

A

B

+2

C

D

+3 +4

E

0..80..4

0..2

0..1

0..2

0..1

0..1

0..1
0..4

Balanced error

52 2-LUTs



22

Guidelines for Precision 
Optimization

• Area benefits are quantized to the number of 
whole-bit substitutions that can be made
– An error range of 0..2 can not be fully utilized at a 

single input
– An error range of 0..2 can be utilized if split between 

two inputs
– If error cannot be distributed completely, overall output 

error can be reduced (take up slack)
• Area benefits increase as error is steered toward 

longer branches
– More opportunity to reduce the area of ancestor nodes
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Rethinking Error
• With straight substitution of zeros, the error range 

is entirely positive

• Reconsider the error as the net distance from the 
real value

• Achieves twice the error range while maintaining 
the same relative level of accuracy
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Renormalization

• Can bias the output error range by 
substituting ones and zeros strategically
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Renormalization

• Alternatively, renormalize later by adding a 
constant to bias the error range
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Conclusions

• Precision optimization of circuit datapath is 
a major implementation detail

• Poor support from a tools perspective
• Proposed methodologies for precision 

optimization of least significant bit position
– Area and Error models
– Optimization guidelines
– Renormalization alternatives



Future Directions
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Active vs. Lazy Renormalization
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Active vs. Lazy Renormalization
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•When/How should we perform renormalization?
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Active vs. Lazy Renormalization
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•Do the primary inputs give us enough control?

???…???
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Active vs. Lazy Renormalization

+1

A

B

+2

C

D

+3 +4

E

•When do we need to insert bias points?

???…???
bias
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Active vs. Lazy Renormalization
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•What is the area impact of various types of
renormalization?
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Active vs. Lazy Renormalization
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•What is the area impact of various types of
renormalization?
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Active vs. Lazy Renormalization
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•Is there a “best” way to renormalize?
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Renormalization Approaches

• Determine area effects of renormalization
– Single operator node (active)
– Constant bias (lazy)

• Determine area effects these 
renormalization methods have on child 
nodes

• With area and error, we can deduce an 
algorithm for type and placement


